Effect of Alternate-Day Fasting Among Metabolically Healthy Obese Adults (2024)

Key Points

Question Is alternate-day fasting more effective for weight loss and weight maintenance compared with daily calorie restriction?

Findings This randomized clinical trial included 100 metabolically healthy obese adults. Weight loss after 1 year in the alternate-day fasting group (6.0%) was not significantly different from that of the daily calorie restriction group (5.3%), relative to the no-intervention control group.

Meaning Alternate-day fasting does not produce superior weight loss or weight maintenance compared with daily calorie restriction.

Abstract

Importance Alternate-day fasting has become increasingly popular, yet, to date, no long-term randomized clinical trials have evaluated its efficacy.

Objective To compare the effects of alternate-day fasting vs daily calorie restriction on weight loss, weight maintenance, and risk indicators for cardiovascular disease.

Design, Setting, and Participants A single-center randomized clinical trial of obese adults (18 to 64 years of age; mean body mass index, 34) was conducted between October 1, 2011, and January 15, 2015, at an academic institution in Chicago, Illinois.

Interventions Participants were randomized to 1 of 3 groups for 1 year: alternate-day fasting (25% of energy needs on fast days; 125% of energy needs on alternating “feast days”), calorie restriction (75% of energy needs every day), or a no-intervention control. The trial involved a 6-month weight-loss phase followed by a 6-month weight-maintenance phase.

Main Outcomes and Measures The primary outcome was change in body weight. Secondary outcomes were adherence to the dietary intervention and risk indicators for cardiovascular disease.

Results Among the 100 participants (86 women and 14 men; mean [SD] age, 44 [11] years), the dropout rate was highest in the alternate-day fasting group (13 of 34 [38%]), vs the daily calorie restriction group (10 of 35 [29%]) and control group (8 of 31 [26%]). Mean weight loss was similar for participants in the alternate-day fasting group and those in the daily calorie restriction group at month 6 (–6.8% [95% CI, –9.1% to –4.5%] vs –6.8% [95% CI, –9.1% to –4.6%]) and month 12 (–6.0% [95% CI, –8.5% to –3.6%] vs –5.3% [95% CI, –7.6% to –3.0%]) relative to those in the control group. Participants in the alternate-day fasting group ate more than prescribed on fast days, and less than prescribed on feast days, while those in the daily calorie restriction group generally met their prescribed energy goals. There were no significant differences between the intervention groups in blood pressure, heart rate, triglycerides, fasting glucose, fasting insulin, insulin resistance, C-reactive protein, or hom*ocysteine concentrations at month 6 or 12. Mean high-density lipoprotein cholesterol levels at month 6 significantly increased among the participants in the alternate-day fasting group (6.2 mg/dL [95% CI, 0.1-12.4 mg/dL]), but not at month 12 (1.0 mg/dL [95% CI, –5.9 to 7.8 mg/dL]), relative to those in the daily calorie restriction group. Mean low-density lipoprotein cholesterol levels were significantly elevated by month 12 among the participants in the alternate-day fasting group (11.5 mg/dL [95% CI, 1.9-21.1 mg/dL]) compared with those in the daily calorie restriction group.

Conclusions and Relevance Alternate-day fasting did not produce superior adherence, weight loss, weight maintenance, or cardioprotection vs daily calorie restriction.

Trial Registration clinicaltrials.gov Identifier: NCT00960505

Introduction

The first-line therapy prescribed to obese patients for weight loss is daily calorie restriction.1 However, many patients find it difficult to adhere to a conventional weight-loss diet because food intake must be limited every day.2 As such, adherence to daily calorie restriction decreases after 1 month and continues to decline thereafter.3-5 In light of this limitation, another approach that requires individuals to restrict calories only every other day was developed.6 This strategy is called alternate-day fasting and involves a fast day where individuals consume 25% of their usual intake (approximately 500 kcal), alternated with a “feast day” where individuals are permitted to consume food ad libitum. Findings from short-term studies indicate that participants lose 3% to 7% of body weight after 2 to 3 months of alternate-day fasting and experience improvements in lipid profiles, blood pressure, and insulin sensitivity.7-13

Alternate-day fasting regimens have increased in popularity during the past decade, and several best-selling diet books14,15 have promoted this approach. More than 1 million copies of these books have been sold in the United States and United Kingdom to date. Despite the growing popularity of alternate-day fasting, to our knowledge, no long-term randomized clinical trials have evaluated its efficacy or compared this regimen with a conventional weight-loss diet.

We conducted a 1-year, randomized clinical trial to compare the effects of alternate-day fasting vs daily calorie restriction on body weight and risk indicators for cardiovascular disease. We hypothesized that the participants in the alternate-day fasting group would be more adherent to their diet, achieve greater weight loss, and experience more pronounced improvements in risk indicators for cardiovascular disease during the 6-month weight-loss phase compared with those in the daily calorie restriction group. We also hypothesized that the alternate-day fasting group would better maintain their weight loss and sustain their improvements in risk indicators for cardiovascular disease during the 6-month weight-maintenance phase compared with the daily calorie restriction group.

Methods

Participants

We conducted the trial between October 1, 2011, and January 15, 2015, at the University of Illinois at Chicago. Participants were recruited from the Chicago area by means of flyers placed around the university and were screened via a questionnaire, an assessment of body mass index, and a pregnancy test. Individuals included were men and women between 18 and 65 years of age, with a body mass index between 25.0 and 39.9 (calculated as weight in kilograms divided by height in meters squared) who had previously been sedentary (<60 minutes per week of light activity for the 3 months prior to the study). Exclusion criteria were a history of cardiovascular disease or type 1 or 2 diabetes, use of medications that could affect study outcomes, unstable weight for 3 months prior to the beginning of the study (>4-kg weight loss or gain), perimenopause or otherwise irregular menstrual cycle, pregnancy, and currently smoking. The protocol was approved by the Office for the Protection of Research Subjects at the University of Illinois at Chicago, and written informed consent was obtained from all participants. The full protocol is available in Supplement 1.

Randomization and Intervention Groups

Participants were randomized in a 1:1:1 ratio to an alternate-day fasting group, daily calorie restriction group, or no-intervention control group. Randomization was performed by a stratified random sampling procedure by sex, age (18-42 years and 43-65 years), and body mass index (25.0-32.5 and 32.6-39.9). Block size ranged from 1 to 11 participants. The active trial duration was 1 year and consisted of a baseline phase (1 month), a weight-loss phase (6 months), and a weight-maintenance phase (6 months) (eFigure 1 in Supplement 2). We chose this design because weight loss typically peaks at 6 months during a lifestyle intervention.16 During the baseline phase, all participants ate their usual diet and maintained a stable weight. Baseline total energy expenditure was measured using doubly labeled water.17 All participants were instructed not to change their physical activity habits throughout the trial (eg, not to join a gym) to avoid potential confounding.

Weight-Loss Phase

Participants in the alternate-day fasting group and those in the daily calorie restriction group were provided with all meals during the first 3 months of the trial and received dietary counseling thereafter (eFigure 1 in Supplement 2). During the 6-month weight-loss phase, the intervention groups were instructed to reduce their energy intake by a mean of 25% per day. To achieve this reduction, the alternate-day fasting group was instructed to consume 25% of baseline energy intake as a lunch (between 12 pm and 2 pm) on fast days and 125% of baseline energy intake split between 3 meals on alternating feast days. The daily calorie restriction group was instructed to consume 75% of baseline energy intake split between 3 meals every day. The provided meals were in accordance with the American Heart Association guidelines18 for macronutrient intake, with 30% of energy as fat, 55% as carbohydrate, and 15% as protein. From months 4 to 6, when food was no longer provided, intervention participants met individually with a dietician or nutritionist weekly to learn how to continue with their diets on their own.

Weight-Maintenance Phase

At the beginning of the 6-month weight-maintenance phase, total daily energy expenditure was reassessed using doubly labeled water.17 Participants were instructed to maintain their body weight during this phase. Participants in the alternate-day fasting group were instructed to consume 50% of energy needs as a lunch on fast days and 150% of energy needs split between 3 meals on alternating feast days. Participants in the daily calorie restriction group were instructed to consume 100% of energy needs split between 3 meals every day. Intervention participants met with the dietician individually each month to learn cognitive behavioral strategies to prevent weight regain19 and received personalized energy targets for weight maintenance based on results from doubly labeled water.

Control Group Protocol

Participants in the control group were instructed to maintain their weight throughout the trial and not to change their eating or physical activity habits. Controls received no food or dietary counseling but visited the research center at the same frequency as the intervention participants (to provide outcome measurements). Controls who completed the 12-month trial received 3 months of free weight-loss counseling and a 12-month gym membership at the end of the study.

Outcome Measures

The primary outcome of the study was change in body weight, which was measured monthly via a digital scale while the participant was in a hospital gown. Fat mass and lean mass were measured every 6 months in the fasted state by dual-energy x-ray absorptiometry (QDR 4500W; Hologic). Visceral fat mass was measured every 6 months by magnetic resonance imaging performed with a 1.5-T magnet (Siemens Vision), and images were analyzed using validated software.20

Mean percentage energy restriction during the weight-loss phase was retrospectively calculated by the intake balance method using doubly labeled water and changes in body composition.21 Physical activity was measured for 7 consecutive days every 6 months using an activity monitor (SenseWear Armband Mini; BodyMedia Inc).22 Dietary intake and adherence to diets was assessed every 3 months with a 7-day food record and analyzed using Nutritionist Pro software (Axxya Systems LLC). Intervention participants were considered to be adherent when their actual energy intake, determined via food records, was within 200 kcal of their prescribed daily energy goal.

Blood samples were obtained following a 12-hour fast every 6 months (collected on the morning after a feast day for the alternate-day fasting group). Secondary outcomes included blood pressure, heart rate, and total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, fasting glucose, fasting insulin, C-reactive protein, and hom*ocysteine concentrations (analytical methods are detailed in the full protocol in Supplement 1). The homeostasis model assessment of insulin resistance was calculated as insulin × glucose/405, where the unit of measure for insulin is in micro-international units per milliliter and the unit of measure for glucose is milligrams per deciliter.23

Statistical Analysis

For the sample size calculation, we estimated that alternate-day fasting would reduce body weight by 15% by month 69,11 and that daily calorie restriction would reduce body weight by 10% by month 6.24 We calculated that 26 participants per group would provide 80% power to detect a significant difference of 5% in body weight between the alternate-day fasting group and the daily calorie restriction group at month 6, using a 2-tailed independent-samples t test with α = .05. We anticipated a dropout rate of 12%. Thus, we initially aimed to recruit 90 participants (30 per group), assuming that 78 participants (26 per group) would complete the trial. We later decided to recruit 100 participants to increase our statistical power because our dropout rate was higher than expected.

Data are shown as mean values (with 95% CIs) unless otherwise noted. A 2-tailed P < .05 was considered statistically significant. Tests for normality were included in the model, and all data were found to be normally distributed. We conducted an intention-to-treat analysis, which included data from all 100 participants who underwent randomization. Results are reported by intention-to-treat analysis unless indicated otherwise. A linear mixed model was used to assess time, diet, and time × diet effects for each outcome. This model provides unbiased estimates of time and treatment effects under a missing-at-random assumption. Time was not assumed to be linear in the model. This strategy allowed for estimation of time and diet effects (and their interaction) without imposing a linear time trend. The analyses were performed using SAS, version 9.4 (SAS Institute, Inc), and R software, version 3.2.2 (R Foundation for Statistical Computing).

Participant Characteristics and Attrition

Of the 222 participants who were screened, 100 (45.0%) were randomly assigned to the diet or control groups, and 69 (69.0% of those assigned) completed the study (Figure 1). The dropout rate was highest in the alternate-day fasting group (13 of 34 [38%]), relative to the daily calorie restriction group (10 of 35 [29%]) and control group (8 of 31 [26%]). More participants in the alternate-day fasting group than in the daily calorie restriction group withdrew owing to difficulties adhering with the diet. All baseline characteristics had comparable distributions between the alternate-day fasting group, the daily calorie restriction group, and the control group (Table 1). The participants were primarily metabolically healthy obese women.

Prescribed vs Actual Energy Intake Determined via Food Records

On the fast day (Figure 2A), participants in the alternate-day fasting group exceeded their prescribed energy goal at months 3 and 6. On the feast day (Figure 2B), participants in the alternate-day fasting group ate less than their prescribed goal at months 3, 6, 9, and 12. Participants in the daily calorie restriction group (Figure 2C) met their prescribed energy goals at months 3, 6, and 12 but ate less than their prescribed goal at month 9. A higher proportion of participants in the daily calorie restriction group were adherent to their energy goals at months 3, 6, 9, and 12 relative to those in the alternate-day fasting group.

Percentage Energy Restriction Determined via Doubly Labeled Water

From baseline to month 6, the alternate-day fasting group achieved a mean (SD) percentage energy restriction of 21% (16%), and the daily calorie restriction group achieved a mean (SD) percentage energy restriction of 24% (16%), with no significant difference between the intervention groups or compared with the control group (eFigure 2 in Supplement 2).

Physical Activity and Dietary Intake

Data on dietary intake are displayed in eTable 1 in Supplement 2. Percentage of energy intake from fat, carbohydrates, and protein did not differ significantly over time in any of the groups. Physical activity, measured as steps per day, did not change during the course of the trial in any group (eTable 2 in Supplement 2). This level of activity is approximately 1000 to 2000 steps per day higher than that of the average overweight or obese adult.25

Weight Loss and Weight Maintenance

Changes in body weight are displayed in Figure 3 and Table 2. Weight loss was not significantly different between the alternate-day fasting group and the daily calorie restriction group at month 6. At the end of the study, total weight loss was –6.0% (95% CI, –8.5% to –3.6%) for the alternate-day fasting group and –5.3% (95% CI, –7.6% to –3.0%) for the daily calorie restriction group, relative to controls, with no significant difference between the intervention groups. Weight regain from months 6 to 12 (–0.8%; 95% CI, –3.2% to 1.7%) was not significantly different between the alternate-day fasting group and the daily calorie restriction group. Moreover, weight regain from months 6 to 12 was not significantly different between the alternate-day fasting group and controls (0.8%; 95% CI, –1.8% to 3.3%), or the daily calorie restriction group and controls (1.5%; 95% CI, –0.8% to 3.9%). Changes in body composition are reported in Table 2. There were no statistically significant differences between the alternate-day fasting group and the daily calorie restriction group for fat mass, lean mass, or visceral fat mass at month 6 or month 12.

Blood Pressure and Heart Rate

Blood pressure was not significantly different between the intervention groups, or relative to controls, at month 6 or month 12 (Table 2). There were also no statistically significant differences in heart rate between the alternate-day fasting group and the daily calorie restriction group at month 6 or month 12 (Table 2).

Plasma Lipids

Changes in plasma lipids during the course of the trial are shown in Table 2. Total cholesterol levels were not significantly different between the intervention groups, or relative to controls, at month 6 or month 12. At month 6, high-density lipoprotein cholesterol levels were significantly elevated in the alternate-day fasting group by 6.2 mg/dL (95% CI, 0.1-12.4 mg/dL) (to convert to millimoles per liter, multiply by 0.0259) vs the daily calorie restriction group, but this effect was no longer observed by month 12. Low-density lipoprotein cholesterol concentrations did not differ significantly between the intervention groups at month 6. At month 12, low-density lipoprotein cholesterol levels significantly increased in the alternate-day fasting group (11.5 mg/dL [95% CI, 1.9-21.1 mg/dL]) (to convert to millimoles per liter, multiply by 0.0259) relative to the daily calorie restriction group. Triglyceride levels did not differ significantly between the intervention groups at month 6 or month 12.

Glucoregulatory and Inflammatory Factors

Changes in glucoregulatory and inflammatory factors are displayed in Table 2. Fasting plasma glucose did not differ significantly between the intervention groups, or relative to controls, at month 6 or month 12. There were also no significant differences in fasting insulin or the homeostasis model assessment of insulin resistance between the intervention groups at month 6 or month 12. High-sensitivity C-reactive protein and hom*ocysteine levels did not differ significantly between the intervention groups, or relative to controls, at month 6 or month 12. We also performed a sensitivity analysis, in which sex and race/ethnicity were included as adjustment covariates in the intention-to-treat mixed model. The inclusion of sex and race/ethnicity did not affect any of the estimated treatment effects reported in Table 2.

Discussion

The results of this randomized clinical trial demonstrated that alternate-day fasting did not produce superior adherence, weight loss, weight maintenance, or improvement in risk indicators for cardiovascular disease compared with daily calorie restriction.

Alternate-day fasting has been promoted as a potentially superior alternative to daily calorie restriction under the assumption that it is easier to restrict calories every other day. However, our data from food records, doubly labeled water, and regular weigh-ins indicate that this assumption is not the case. Rather, it appears as though many participants in the alternate-day fasting group converted their diet into de facto calorie restriction as the trial progressed. Moreover, the dropout rate in the alternate-day fasting group (38%) was higher than that in the daily calorie restriction group (29%) and the control group (26%). It was also shown that more participants in the alternate-day fasting group withdrew owing to dissatisfaction with diet compared with those in the daily calorie restriction group (Figure 1). Taken together, these findings suggest that alternate-day fasting may be less sustainable in the long term, compared with daily calorie restriction, for most obese individuals. Nevertheless, it is still possible that a certain smaller segment of obese individuals may prefer this pattern of energy restriction instead of daily restriction. It will be of interest to examine what behavioral traits (eg, ability to go for long periods without eating) make alternate-day fasting more tolerable for some individuals than others.

To our knowledge, the present study is the longest and largest trial of alternate-day fasting to date. Previous trials of alternate-day fasting reported weight loss of 3% to 7% after 2 to 3 months of diet.7-13 Adherence was measured in several previous trials and was shown to be high (eg, participants met their calorie goals on approximately 80%-90% of fast days).7,8,10,11 Most of these past studies provided food on the fast day,7,8,10,11 so the provision of food is not a confounder when comparing past findings with present findings. Food was provided to the intervention participants during the first 3 months of the weight-loss phase to promote adherence26 and show participants the types and quantities of foods that they should be eating. Data from the food records indicated that participants frequently ate extra “nonstudy” foods that were purchased from stores or restaurants. This finding suggests that limiting caloric intake to approximately 500 kcal every other day may have been difficult for many participants early in the intervention. Future work in this area should examine whether this lack of adherence to alternate-day fasting is due to cognitive, environmental, and/or physiological factors. For instance, measuring changes in subjective appetite (hunger and fullness) in conjunction with modulations in appetite hormones (ghrelin, peptide YY, and glucagon-like peptide-1) could offer some insight into why daily calorie restriction may allow for easier adherence compared with alternate-day fasting.

Contrary to our original hypotheses, the participants in the alternate-day fasting group did not experience more pronounced improvements in risk indicators for cardiovascular disease compared with the participants in the daily calorie restriction group. However, the trial included primarily metabolically healthy obese adults. Since many of the participants had normal cholesterol levels and normal blood pressure at baseline, it is not surprising that most risk indicators for cardiovascular disease did not change in response to diet.

Limitations

Our study has several limitations. First, the duration of the maintenance phase was short (6 months). Second, the control group was imperfect, in that they received no food, no counseling, and less attention from study personnel, relative to the intervention groups, which may have confounded our findings. We also failed to include the control group in our initial power calculation. Third, since the dropout rate was higher than anticipated, our power to detect the hypothesized difference of 5% weight loss between the intervention groups at month 6 decreased from 80% to 60%. The higher dropout rate in the alternate-day fasting group may have also introduced a possible selection bias between groups.27 Finally, we enrolled predominantly metabolically healthy obese individuals, which may have hindered the abilities of the interventions to produce greater improvements in our measured cardiovascular disease risk indicators.28,29 The generalizability of our findings is also limited by the enrollment.

Conclusions

The alternate-day fasting diet was not superior to the daily calorie restriction diet with regard to adherence, weight loss, weight maintenance, or improvement in risk indicators for cardiovascular disease.

Back to top

Article Information

Corresponding Author: Krista A. Varady, PhD, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W Taylor St, Room 532, Chicago, IL 60612 (varady@uic.edu).

Accepted for Publication: February 26, 2017.

Published Online: May 1, 2017. doi:10.1001/jamainternmed.2017.0936

Author Contributions: Dr Varady had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Trepanowski and Kroeger contributed equally to this work and should be considered co–first authors.

Study concept and design: Kroeger, Varady.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Trepanowski, Kroeger, Varady.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Freels, Rigdon.

Obtained funding: Varady.

Administrative, technical, or material support: Kroeger, Barnosky, Bhutani, Hoddy, Gabel, Rood, Varady.

Study supervision: Varady.

Conflict of Interest Disclosures: Dr Varady reported receiving an advance for the book The Every-Other-Day Diet: The Diet That Lets You Eat All You Want (Half the Time) and Keep the Weight Off, published by Hachette Book Group. No other disclosures were reported.

Funding/Support: This study was supported by grant R01HL106228 from the National Institutes of Health/National Heart, Lung, and Blood Institute and grants P30DK072476 and F32DK107157 from the National Institute of Diabetes and Digestive and Kidney Diseases.

Role of Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and the decision to submit the manuscript for publication

References

1.

Jensen MD, Ryan DH, Apovian CM, et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society.Circulation. 2014;129(25)(suppl 2):S102-S138.PubMedGoogle ScholarCrossref

2.

Moreira EA, Most M, Howard J, Ravussin E. Dietary adherence to long-term controlled feeding in a calorie-restriction study in overweight men and women.Nutr Clin Pract. 2011;26(3):309-315.PubMedGoogle ScholarCrossref

3.

Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial.JAMA. 2005;293(1):43-53.PubMedGoogle ScholarCrossref

4.

Das SK, Gilhooly CH, Golden JK, et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial.Am J Clin Nutr. 2007;85(4):1023-1030.PubMedGoogle Scholar

5.

Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates.N Engl J Med. 2009;360(9):859-873.PubMedGoogle ScholarCrossref

6.

Varady KA, Hellerstein MK. Alternate-day fasting and chronic disease prevention: a review of human and animal trials.Am J Clin Nutr. 2007;86(1):7-13.PubMedGoogle Scholar

7.

Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Varady KA. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans.Obesity (Silver Spring). 2013;21(7):1370-1379.PubMedGoogle ScholarCrossref

8.

Hoddy KK, Kroeger CM, Trepanowski JF, Barnosky A, Bhutani S, Varady KA. Meal timing during alternate day fasting: impact on body weight and cardiovascular disease risk in obese adults.Obesity (Silver Spring). 2014;22(12):2524-2531.PubMedGoogle Scholar

9.

Johnson JB, Summer W, Cutler RG, et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma [published correction appears in Free Radic Biol Med. 2007;43(9):1348]. Free Radic Biol Med. 2007;42(5):665-674.PubMedGoogle ScholarCrossref

10.

Klempel MC, Kroeger CM, Varady KA. Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet.Metabolism. 2013;62(1):137-143.PubMedGoogle ScholarCrossref

11.

Varady KA, Bhutani S, Church EC, Klempel MC. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults.Am J Clin Nutr. 2009;90(5):1138-1143.PubMedGoogle ScholarCrossref

12.

Catenacci VA, Pan Z, Ostendorf D, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity.Obesity (Silver Spring). 2016;24(9):1874-1883.PubMedGoogle ScholarCrossref

13.

Alhamdan BA, Garcia-Alvarez A, Alzahrnai AH, et al. Alternate-day versus daily energy restriction diets: which is more effective for weight loss? a systematic review and meta-analysis.Obes Sci Pract. 2016;2(3):293-302.PubMedGoogle ScholarCrossref

14.

Mosley M, Spencer M. The Fast Diet. New York, NY: Atria Books; 2012.

15.

The 5:2 Fast Diet For Beginners. Berkeley, CA: Rockridge Press; 2013.

16.

Gardner CD, Kiazand A, Alhassan S, et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial.JAMA. 2007;297(9):969-977.PubMedGoogle ScholarCrossref

17.

Ravussin E, Redman LM, Rochon J, et al; CALERIE Study Group. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity.J Gerontol A Biol Sci Med Sci. 2015;70(9):1097-1104.PubMedGoogle ScholarCrossref

18.

Eckel RH, Jakicic JM, Ard JD, et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation. 2014;129(25)(suppl 2):S76-S99.PubMedGoogle ScholarCrossref

19.

Laliberte M, McCabe RE, Taylor V. The Cognitive Behavioral Workbook for Weight Management: A Step-by-Step Program. Oakland, CA: New Harbinger Publications; 2009.

20.

Demerath EW, Ritter KJ, Couch WA, et al. Validity of a new automated software program for visceral adipose tissue estimation.Int J Obes (Lond). 2007;31(2):285-291.PubMedGoogle ScholarCrossref

21.

de Jonge L, DeLany JP, Nguyen T, et al. Validation study of energy expenditure and intake during calorie restriction using doubly labeled water and changes in body composition.Am J Clin Nutr. 2007;85(1):73-79.PubMedGoogle Scholar

22.

Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ. Accuracy of armband monitors for measuring daily energy expenditure in healthy adults.Med Sci Sports Exerc. 2010;42(11):2134-2140.PubMedGoogle ScholarCrossref

23.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.Diabetologia. 1985;28(7):412-419.PubMedGoogle ScholarCrossref

24.

Redman LM, Rood J, Anton SD, Champagne C, Smith SR, Ravussin E; Pennington Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE) Research Team. Calorie restriction and bone health in young, overweight individuals.Arch Intern Med. 2008;168(17):1859-1866.PubMedGoogle ScholarCrossref

25.

Tudor-Locke C, Brashear MM, Johnson WD, Katzmarzyk PT. Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese US men and women.Int J Behav Nutr Phys Act. 2010;7:60.PubMedGoogle ScholarCrossref

26.

Hall DM, Most MM. Dietary adherence in well-controlled feeding studies.J Am Diet Assoc. 2005;105(8):1285-1288.PubMedGoogle ScholarCrossref

27.

Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias.Epidemiology. 2004;15(5):615-625.PubMedGoogle ScholarCrossref

28.

Janiszewski PM, Ross R. Effects of weight loss among metabolically healthy obese men and women.Diabetes Care. 2010;33(9):1957-1959.PubMedGoogle ScholarCrossref

29.

Kantartzis K, Machann J, Schick F, et al. Effects of a lifestyle intervention in metabolically benign and malign obesity.Diabetologia. 2011;54(4):864-868.PubMedGoogle ScholarCrossref

Effect of Alternate-Day Fasting Among Metabolically Healthy Obese Adults (2024)

FAQs

What are the effects of alternate-day fasting? ›

In long-term human trials (2–3 months), ADF apparently lost body weight by about 3–7% and decreased the risk of artery disease and other biochemical indexes of the human body [low-density lipoprotein (LDL) cholesterol, triglycerides (TGs), and so on] (19, 24, 25).

What is alternate-day fasting for obese? ›

Alternate-day fasting and weight loss

Studies among adults with overweight and obesity show that engaging in ADF may help you lose 3–8% of your body weight in 2–12 weeks. Research suggests that this method is not superior to traditional daily calorie restriction for promoting weight loss ( 3 , 6 , 8 , 9 , 10 ).

What happens when an obese person fasts? ›

Alternate-Day Fasting (ADF)

Individuals with overweight and obesity can lose 3%–7% of their body weight after two to three months of ADF, which is accompanied by improvements in blood lipids, blood pressure, and insulin sensitivity.

What are the results of alternate-day fasting for 3 months? ›

FMD after 3-month study has been shown to be effective to decrease blood glucose levels and IGF-1 levels, and increase circulating ketones.

How much weight did you lose with alternate-day fasting? ›

“But people eat only about 110 percent of their energy needs on feed day,” she said. “They don't binge, and they end up losing weight.” Her research shows that alternate-day fasting dieters can shed 10 to 30 pounds in about eight weeks.

Who shouldn't do alternate-day fasting? ›

Some people should steer clear of trying intermittent fasting: Children and teens under age 18. Women who are pregnant or breastfeeding. People with type 1 diabetes who take insulin.

Can an obese person lose weight by fasting? ›

Research on intermittent fasting for weight loss

Another study conducted by the University of Adelaide was conducted to measure the success of intermittent fasting on women with obesity over the course of 10 weeks. They found that the most successful participants lost approximately 0.5 to 1kg per week of the study.

Which type of fasting burns the most fat? ›

Occasional fasting combined with regular weight training is best for fat loss, Pilon says. By going on one or two 24-hour fasts during the week, you allow yourself to eat a slightly higher number of calories on the other five or six nonfasting days.

What fasting is best for overweight? ›

One study reports that alternate day fasting is effective for weight loss and heart health in healthy and overweight adults. The researchers found that the 32 participants lost an average of 5.2 kilograms (kg), or just over 11 pounds (lb), over a 12-week period.

How long can a super obese person go without eating? ›

Your body can meet the majority of your calorie requirements from stored fat, but total starvation is fatal in 8-12 weeks, regardless of initial body weight. Within one or two days of your last meal, your body will have exhausted all the glycogen stored in the liver and muscles.

How long can a morbidly obese person live? ›

The Link Between Obesity and Life Expectancy

The lowest death rates were among women with a BMI of 22.0 to 23.4 and among men with a BMI of 23.5 to 24.9. Some researchers have determined that, in those who are extremely obese, life expectancy may be reduced by an estimated five to 20 years.

What is the 2 2 2 method metabolism? ›

Smith says the first 2 is for two different types of meals: fatty meals and carb-heavy meals. The second 2 represents non-food related aspects like weekly weigh-ins and introspective journaling, while the third 2 represents exercise consisting of bodyweight and/or high intensity interval workouts.

What are the results of alternate-day fasting for 6 months? ›

For the sample size calculation, we estimated that alternate-day fasting would reduce body weight by 15% by month 69,11 and that daily calorie restriction would reduce body weight by 10% by month 6.

How many days of fasting to see benefits? ›

Fasting of 72+ hours is also shown to improve the body's response to toxin exposure and stress hormones. 24 to 72 hours: you start producing ketone bodies to fuel your brain, and see an increase in fat loss and autophagy.

What fasting does to the body 30 days? ›

Faeces stuck to our intestinal walls will start to loosen. Our lungs and other cleansing organs will also begin a process of healing. Our immune system will be more active than normal at this time. Additionally, burning fat for energy not only aids weight loss but helps lower our cholesterol levels in the long run.

How long does it take to see results from alternate-day fasting? ›

Overall, ten out of ten alternate-day fasting studies showed significant reductions in body fat. Small short-term studies show about a 4 to 8 percent drop in body weight after 3 to 12 weeks.

How many hours should I fast for on alternate-day fasting? ›

36:12 fasting method

This is an extreme method of fasting also called zero-calorie alternate-day fasting. The method involves 36 hours of zero-calorie fasting followed by 12 hours of unlimited eating. You eat breakfast when you get up and then other meals within 12 hours followed by 36 hours of fasting.

References

Top Articles
Latest Posts
Article information

Author: Prof. Nancy Dach

Last Updated:

Views: 6163

Rating: 4.7 / 5 (77 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Prof. Nancy Dach

Birthday: 1993-08-23

Address: 569 Waelchi Ports, South Blainebury, LA 11589

Phone: +9958996486049

Job: Sales Manager

Hobby: Web surfing, Scuba diving, Mountaineering, Writing, Sailing, Dance, Blacksmithing

Introduction: My name is Prof. Nancy Dach, I am a lively, joyous, courageous, lovely, tender, charming, open person who loves writing and wants to share my knowledge and understanding with you.